The Numerical Simulation of NonCharring Thermal Degradation and its Application to the Prediction of Compartment Fire Development
نویسندگان
چکیده
In this paper we present some work concerned with the development and testing of a simple solid fuel combustion model incorporated within a Computational Fluid Dynamics (CFD) framework. The model is intended for use in engineering applications of fire field modelling and represents an extension of this technique to situations involving the combustion of solid fuels. The CFD model is coupled with a simple thermal pyrolysis model for combustible solid noncharring fuels, a six-flux radiation model and an eddy-dissipation model for gaseous combustion. The model is then used to simulate a series of small-scale room fire experiments in which the target solid fuel is polymethylmethacrylate. The numerical predictions produced by this coupled model are found to be in very good agreement with experimental data. Furthermore, numerical predictions of the relationship between the air entrained into the fire compartment and the ventilation factor produce a characteristic linear correlation with constant of proportionality 0.38 kg/sm5". The simulation results also suggest that the model is capable of predicting the onset of "flashover" type behaviour within the fire compartment.
منابع مشابه
Computational Simulation of Ablation Phenomena in Glass-filled Phenolic Composites
A one–dimensional, transient and thermal degradation model for predicting responses of composite materials when are exposed to the fire is presented. The presented model simulates ablation of composites with different layers of materials and considers material properties as functions of temperature. The reactions are modeled by using Arrhenius-type parameters and density-temperature diagram...
متن کاملExperimental study and application of computational fluid dynamics on the prediction of air velocity and temperature in a ventilated chamber
The shape of the air flow in the interior is heavily influenced by the air distribution system and the way air enters and exits. By numerically simulating flow by computational fluid dynamics, one can determine the flow pattern and temperature distribution and, with the help of the results, provide an optimal design of the air conditioning system. In this study, a chamber was first constructed ...
متن کاملPrediction of Temperature distribution in Straight Fin with variable Thermal Conductivity and Internal Heat Generation using Legendre Wavelet Collocation Method
Due to increasing applications of extended surfaces as passive methods of cooling, study of thermal behaviors and development of mathematical solutions to nonlinear thermal models of extended surfaces have been the subjects of research in cooling technology over the years. In the thermal analysis of fin, various methods have been applied to solve the nonlinear thermal models. This paper focuses...
متن کاملForest Fire Potential Modeling and Simulation of its Extension Using Remote Sensing Data and GIS: (A Protected Area of Arasbaran)
Forest fire models are generally used in different aspects of fire management and are helpful in understanding and prediction of fire behavior. Forest fires cause a significant damage for public property by destroying a large tract of forest. This helps fire fighters to focus on an area with greater risk and to develop better substructure for fire fighter training and ultimately to plan fire-f...
متن کاملPrediction of Nitrogen Injection Performance in Conventional Reservoirs Using the Correlation Developed by the Incorporation of Experimental Design Techniques and Reservoir Simulation
Enhanced oil recovery using nitrogen injection is a commonly applied method for pressure maintenance in conventional reservoirs. Numerical simulations can be practiced for the prediction of a reservoir performance in the course of injection process; however, a detailed simulation might take up enormous computer processing time. In such cases, a simple statistical model may be a good approach to...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006